380 research outputs found

    Image Analysis Applied to Slices of History

    Get PDF
    During the last 10 years, TASC has undertaken several digital image enhancement projects based on nondestructive evaluation (NDE) applications. Most of these projects involved analyzing NDE imagery to determine why a critical part failed to operate as expected, or trying to recover from a failure which degraded NDE imagery or made it difficult to obtain. Examples include our studies of the Inertial Upper Stage nozzle nosecap following the unsuccessful launch of a Tracking Data Relay Satellite in the summer of 1983 [1] and our development of a video data image processing system to enhance, in real time, unevenly lit, poor-contrast signals from within the contaminated Number 2 reactor vessel at Three Mile Island [2]

    Directional Unsharp Masking-Based Approach for Color Image Enhancement

    Full text link

    Space-Variant Gabor Decomposition for Filtering 3D Medical Images

    Get PDF
    This is an experimental paper in which we introduce the possibility to analyze and to synthesize 3D medical images by using multivariate Gabor frames with Gaussian windows. Our purpose is to apply a space-variant filter-like operation in the space-frequency domain to correct medical images corrupted by different types of acquisitions errors. The Gabor frames are constructed with Gaussian windows sampled on non-separable lattices for a better packing of the space-frequency plane. An implementable solution for 3D-Gabor frames with non-separable lattice is given and numerical tests on simulated data are presented.Austrian Science Fund (FWF) P2751

    Monoclonal antibodies and Fc-fusion protein biologic medicines: A multinational cross-sectional investigation of accessibility and affordability in Asia Pacific regions between 2010 and 2020

    Get PDF
    Background: Monoclonal antibody (mAb) and Fc-fusion protein (FcP) are highly effective therapeutic biologics. We aimed to analyse consumption and expenditure trends in 14 Asia-Pacific countries/regions (APAC) and three benchmark countries (the UK, Canada, and the US). Methods: We analysed 440 mAb and FcP biological products using the IQVIA-MIDAS global sales database. For each year between 2010 and 2020 inclusive, we used standard units (SU) sold per 1000 population and manufacture level price (standardised in 2019 US dollars) to evaluate consumption (accessibility) and expenditure (affordability). Changes of consumption and expenditure were estimated using compound annual growth rate (CAGR). Correlations between consumption, country's economic and health performance indicators were measured using Spearman correlation coefficient. Findings: Between 2010 and 2020, CAGRs of consumption in each region ranged from 7% to 34% and the CAGRs of expenditure ranged from 9% to 31%. The median consumption of biologics was extremely low in lower-middle-income economies (0·29 SU/1000 population) compared with upper-middle-income economies (1·20), high-income economies (40·94) and benchmark countries (109·55), although the median CAGRs of biologics consumption in lower-middle-income economies (31%) was greater than upper-middle-income (14%), high-income economies (13%) and benchmark countries (9%). Consumption was correlated with GDP per capita [Spearman's rank correlation coefficient (r) = 0·75, p < 0·001], health expenditure as a percentage of total (r = 0·83, p < 0·001) and medical doctors’ density (r = 0·85, p < 0·001). Interpretation: There have been significant increases in mAb and FcP biologics consumption and expenditure, however accessibility of biological medicines remains unequal and is largely correlated with country's income level. Funding: This research was funded by NHMRC Project Grant GNT1157506 and GNT1196900; Enhanced Start-up Fund for new academic staff and Internal Research Fund, Department of Medicine, LKS Faculty of Medicine, University of Hong Kong

    Heuristics-based detection to improve text/graphics segmentation in complex engineering drawings.

    Get PDF
    The demand for digitisation of complex engineering drawings becomes increasingly important for the industry given the pressure to improve the efficiency and time effectiveness of operational processes. There have been numerous attempts to solve this problem, either by proposing a general form of document interpretation or by establishing an application dependant framework. Moreover, text/graphics segmentation has been presented as a particular form of addressing document digitisation problem, with the main aim of splitting text and graphics into different layers. Given the challenging characteristics of complex engineering drawings, this paper presents a novel sequential heuristics-based methodology which is aimed at localising and detecting the most representative symbols of the drawing. This implementation enables the subsequent application of a text/graphics segmentation method in a more effective form. The experimental framework is composed of two parts: first we show the performance of the symbol detection system and then we present an evaluation of three different state of the art text/graphic segmentation techniques to find text on the remaining image

    Tau Interaction with Tubulin and Microtubules: From Purified Proteins to Cells

    Get PDF
    International audienceMicrotubules (MTs) play an important role in many cellular processes and are dynamic structures regulated by an important network of microtubules-associated proteins, MAPs, such as Tau. Tau has been discovered as an essential factor for MTs formation in vitro, and its region implicated in binding to MTs has been identified. By contrast, the affinity, the stoichiometry, and the topology of Tau-MTs interaction remain controversial. Indeed, depending on the experiment conditions a wide range of values have been obtained. In this chapter, we focus on three biophysical methods, turbidimetry, cosedimentation assay, and Förster Resonance Energy Transfer to study Tau-tubulin interaction both in vitro and in cell. We highlight precautions that must be taken in order to avoid pitfalls and we detail the nature of the conclusions that can be drawn from these methods about Tau-tubulin interaction

    Analysis of density based and fuzzy c-means clustering methods on lesion border extraction in dermoscopy images

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer-aided segmentation and border detection in dermoscopic images is one of the core components of diagnostic procedures and therapeutic interventions for skin cancer. Automated assessment tools for dermoscopy images have become an important research field mainly because of inter- and intra-observer variations in human interpretation. In this study, we compare two approaches for automatic border detection in dermoscopy images: density based clustering (DBSCAN) and Fuzzy C-Means (FCM) clustering algorithms. In the first approach, if there exists enough density –greater than certain number of points- around a point, then either a new cluster is formed around the point or an existing cluster grows by including the point and its neighbors. In the second approach FCM clustering is used. This approach has the ability to assign one data point into more than one cluster.</p> <p>Results</p> <p>Each approach is examined on a set of 100 dermoscopy images whose manually drawn borders by a dermatologist are used as the ground truth. Error rates; false positives and false negatives along with true positives and true negatives are quantified by comparing results with manually determined borders from a dermatologist. The assessments obtained from both methods are quantitatively analyzed over three accuracy measures: border error, precision, and recall. </p> <p>Conclusion</p> <p>As well as low border error, high precision and recall, visual outcome showed that the DBSCAN effectively delineated targeted lesion, and has bright future; however, the FCM had poor performance especially in border error metric.</p

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure
    corecore